

SPACE-FLIGHT VALIDATION OPPORTUNITIES FOR LOW-TEMPERATURE TECHNOLOGIES

Martin Buehler, NMP Staff Technologist, JPL Peter Mason, Low-Temperature Physicist, Caltech

July 12-13, 2001

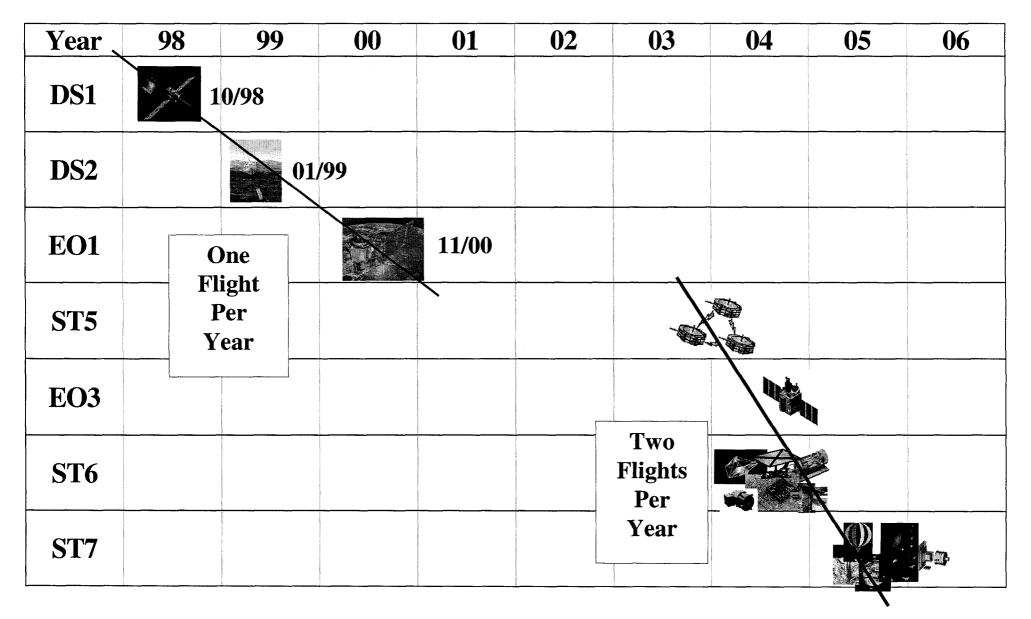
2001 Space Cryogenics Workshop Milwaukee, Wisconsin

Introduction

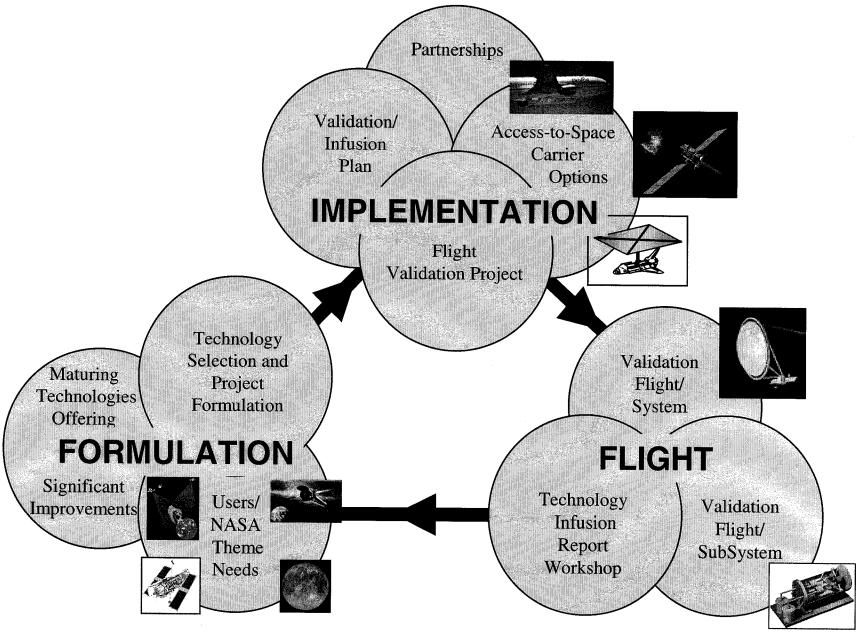
New Millennium Program (NMP) is a				
flight test program providing:				
☐ Flight validation of new technologies				
☐ Reduced risk and cost to NASA's Earth and Space				
Science missions in the use of new technology.				
This talk will:				
☐ Describe NMP				
☐ Solicit suggestions for flight validating low-				
temperature technologies.				

Outline

New Millennium Program Overview ☐ Launch Schedule and Activity Triad		
☐ Current NMP Technologies		
Technology Selection Process ☐ User Needs		
☐ Technology Readiness Levels (TRL) ☐ Flight Justification		
Flight Validation		
☐ Cryogenic Technology Examples		
☐ Candidate Technologies for Flight Validation		



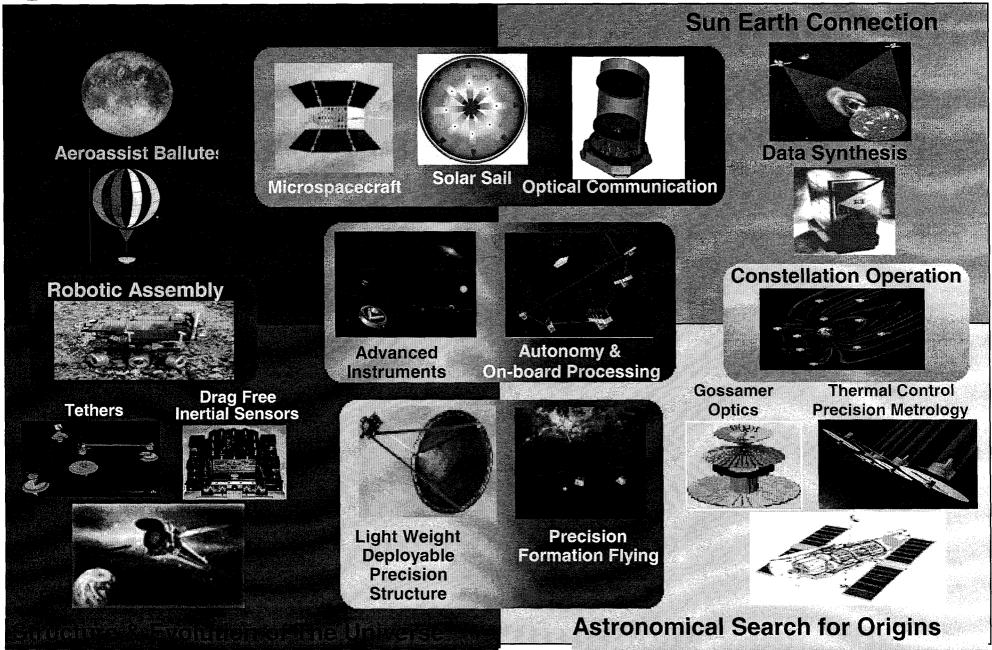
□ NMP Overview


Validation Flight Launch Schedule

NMP Flight Validation Activity Triad

NMP Technologies for Flight Validation

EO3	ST5	ST6	ST7
FT Spectrometer	Satellite Constellation	SUBSYSTEM	SYSTEM
IMPLEMENTATION	IMPLEMENTATION	SELECT: ~Three tech.	SELECT: One system
2004 LAUNCH	2003 LAUNCH	2005 LAUNCH	2005 LAUNCH
Interferometer	SYSTEM	Sail/Sunshade Deploy.	DISTURB. REDUCT. SYS
Focal Plane Array	MicroSat Fabrication	LW High Volt. Solar Array	Gravitational Sensor
Mini-Cooler	Research Quality S/C	Deployable Inflat. Booms	MicroNewton Thuster
RH-A/D Converter	Constellation Operation	Membrane Optics Deploy.	SOLAR SAILS
RH-Vector Processor	SUBSYSTEM	Ultra-Low Power Avionics	Sail Subsystem
Active Pixel Sensor	Micro-Thruster	Optical Communication	Attitude Control
Star Tracker	X-Band Transponder	On-Board Data Processing	Diagnostic Instrument.
LW-Optics & Struct.	Ultra-Low Power Logic	Dilution Cryocooler	Navigat. & Traject. Tools
Power PC	Flexible Harness		AERO-ENTRY/MANEUVER
Stacked Memory	Emmisivity Tech.		Aeroshell Design/Fab
Ultra-Low Power Logic	Constellat. Transceiver		Aerodynamic Design
Radiation Shielding	SatTrack Constel. Tools		Guidance Algorithms
			Advanced Instrumentat.
			AUTONOMY
			On-Board Sci. Process.
			SysLevel Auto. Software
			SysLevel Auto. Enabler
			Adv. Autonomous Enabler
			Hardware Concepts



☐ Technology Selection Process

Science Theme Technology Validation Needs

NASA Technology Readiness Levels

TRL 9 Actual system flight proven through successful mission operations.

TRL 8 Flight System completed and qualified through test and demonstration.

TRL 7 System prototype demonstrated in a space environment.

TRL 6 System prototype demonstrated in a relevant environment.

TRL 5 Component and/or breadboard validated in relevant environment.

TRL 4 Component and/or breadboard validated in laboratory environment.

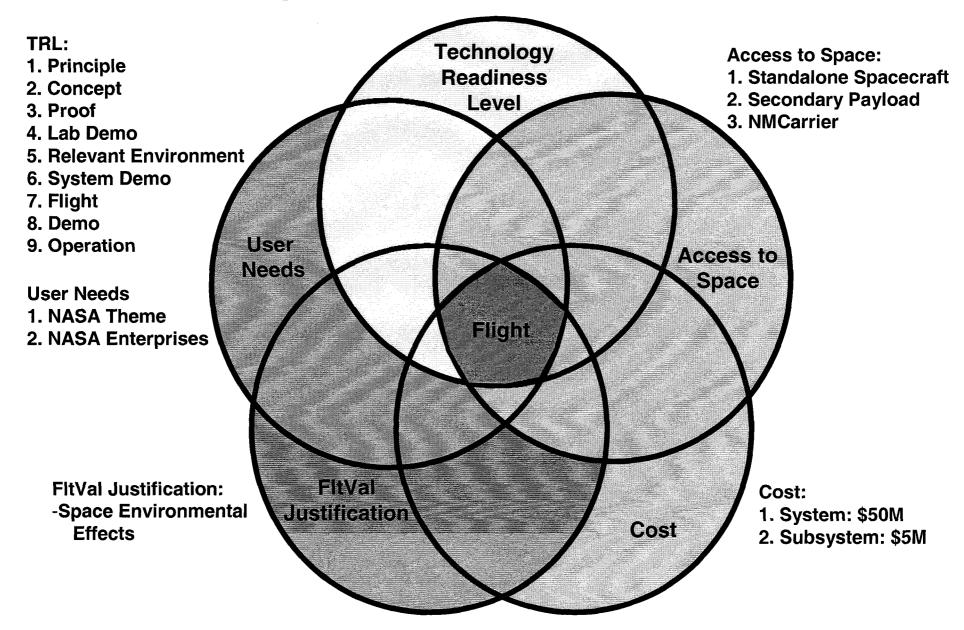
TRL 3 Critical function or characteristic demonstrated (proof-of-concept).

TRL 2 Technology concept and/or application formulated.

TRL 1 Basic principles observed and reported.

NMP flight validates technologies that have matured to TRL 4.

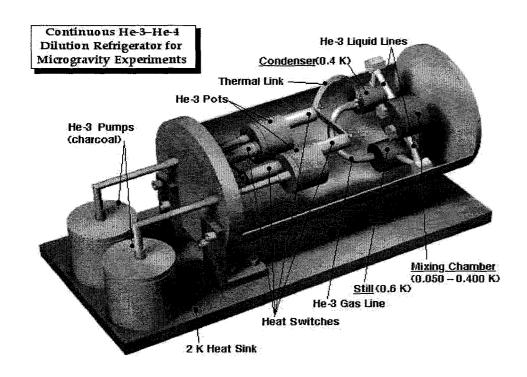
Flight Validation Justification Factors


FACTORS	EFFECTS	EXAMPLES
1. Persistent Effects are	Zero Gravity,	Large, light-weight deployable structures need
steady space/planetary	Radiation Effects,	zero g flight validation because accurate ground
environments acting on	Temperature Cycling.	tests are impossible.
the technology.		
2. Transient Effects are	Cosmic Rays,	System level faults, such as cosmic-ray induced
impulse space/planetary	Temperature Spike,	single-event upsets in integrated circuits.
environments acting on	Dust Devils,	Validation flight needed to demonstrate
technology.	Vibration,	performance of fault management software and
	Coronal Mass Ejection.	planning agents.
3. External Interactions	Planetary Atmospheres,	Aeroassist technologies using planetary
are environments used by	Solar Wind,	atmospheres and solar sails using solar wind for
the technology to	Magnetic Fields.	propulsion. Both require flight validation to build
accomplish something.		an experience base and to determine the
		performance envelope and safe operating zones.
4. Reliability Hazards	Micrometeorite,	Micrometeorite, orbital debris, dust
are space/planetary	Dust Accumulation,	accumulation, atomic oxygen, and radiation
environments that degrade	Atomic Oxygen,	effects are difficult to predict and simulate.
performance.	Radiation Effects.	

Justification based on space environmental effects where ground tests are difficult or impossible.

NMP Flight Validation Selection Target

☐ Flight Validation


NMP System/Subsystem Flight Opportunities

ATTRIBUTE	SYSTEM	SUBSYSTEM
	Several higher-TRL	Lower-TRL new technologies
Definition	technologies tested in a	tested individually.
	system context.	
Normal	Flight: Shared with partner(s)	Flight: Shared with partner(s)
Project	Cost: \$50M	Cost: \$25M supporting several
Class		new technologies
Occasional	Flight: Stand-alone	Flight: Hosted by the NASA
Project		technology carrier
Class	Cost: \$100-\$150M	Cost: \$25M supporting several
Ciass		new technologies.
Launch	Annual	Annual

NMP has two approaches to flight validation.

Subsystem-Level Validation: Dilution Cryocoolers

• Technology Description:

Cryocoolers enable the use of low temperature detectors that measure photons with energies ranging between X-rays through IR. The dilution cryocooler uses liquid helium to achieve temperatures between 50 and 300 mK. Cooling occurs without the use of stored cryogens, with no moving parts, no vibration and no magnetic fields. The size is 25 cm dia. X 40 cm long. The mass is < 2 kg and requires 25 mW peak electrical power and a 2 K heat sink with a < 3 mW capbility.

• Flight Validation Justification:

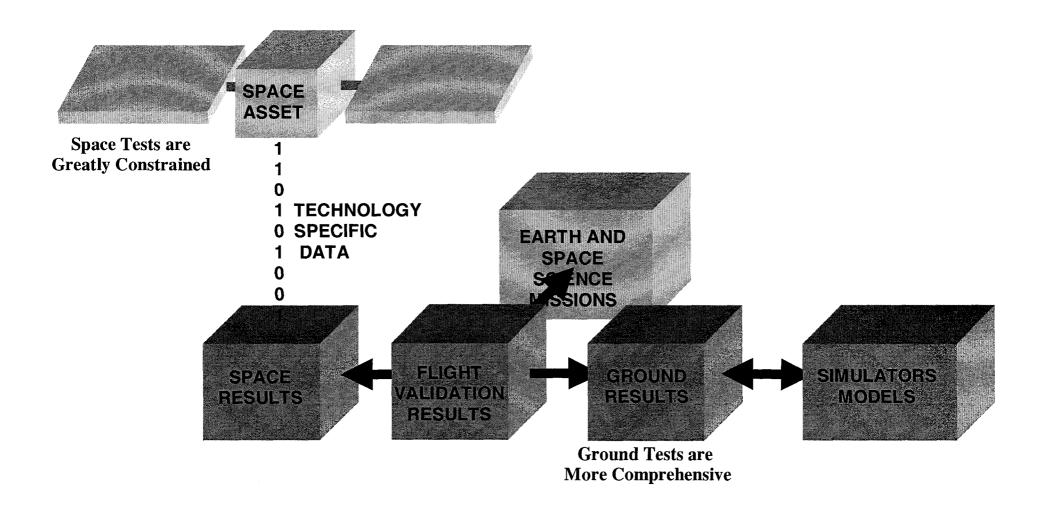
• Dilution cryocoolers are difficult or impossible to test on the ground due to gravity sensitive of the He-3 and He-4 and require flight validation to demonstrate their performance in a space.

Customers:

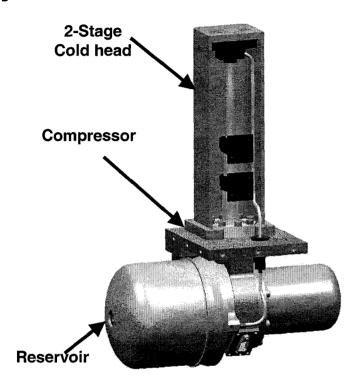
- Missions with X-ray or IR requirements.
- FIRST, Constellation-X, SOFIA, Plank (ESA), SPECS, HIRLODLS; NGST; SUVO

•Validation Measurements:

- Measure the temperature of the dilution cryocooler in space to determine its stability and dynamic behavior.
- Measure the power required to reach lowest temperatures.


• Technology Status:

• A single-cycle prototype with necessary porous material for controlling the liquid has been demonstrated on the ground. It is being modified to operate continuously. The technology is expected to reach TRL 4 by FY02.


Flight Validation Elements

System-Level Validation: Miniaturized Pulse-Tube Cryocooler

Two-Stage Cryocooler

• Technology Description:

The two-stage pulse-tube cooler will provide a stable 55K (2-W load), 90K, and 120K for FPA cooling and for zonal cooling of the instrument. The cooler provides second-stage cooling at ~140 K, 7-W load, allowing the interferometer to be cooled for lower background noise operation. Mass is 17, kg, power is 170 W, and rejection temperature is 300 K.

• Flight Validation Justification:

- The space steady state and dynamic temperature response is difficult to predict based on ground tests.
- The space cooler vibration performance is difficult to predict based on ground tests.

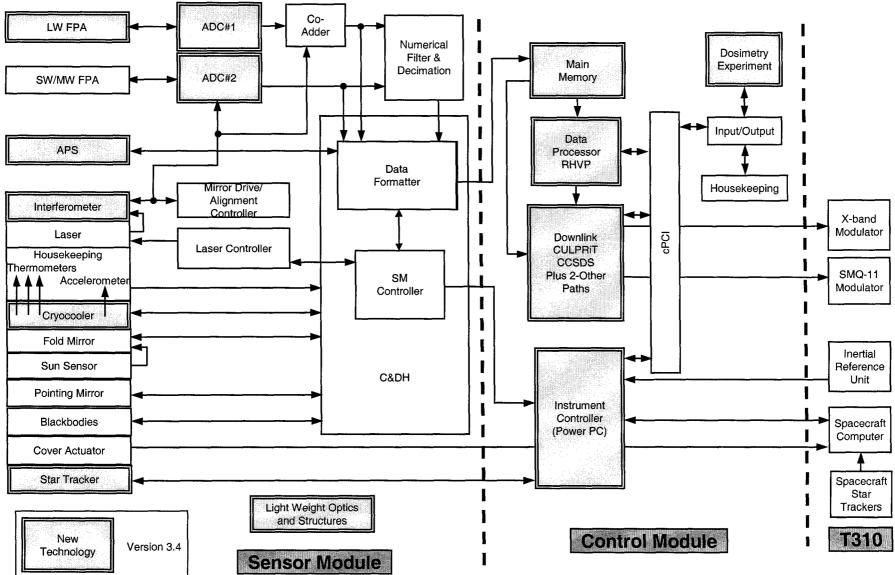
•Customers:

 Enabling technology for NOAA, ONR, FAA, and NASA's Earth and Science Enterprises.

• Validation Measurements:

- Measure the input power and cooler temperature sensors to determine the power efficiency
- Measure the cooler temperature sensor to determine the temperature stability
- Measure the cooler accelerometer to gather vibrational and perhaps mechanical reliability statistics.

•Technology Status:


Bench model of the cooler currently under test has demonstrated a factor of four improvement in mass per unit power over coolers of similar capacity (3.9 kg for GIFTS versus 11 kg for AIRS/TES). The technology is expected to reach TRL 4 by FY02.

CoolWork1713-17)

System-Level Technology Validation: EO3 GIFTS

Validating technology at the system-level is challenging because the technology is embedded in the system and so requires extensive operations and instrumentation planning.

NMP Events

☐ TECHNOLOGY INFUSION:

- DS1 Workshop: January 2000
- DS1 CDROM: January 2001
- EO1 Workshop: August 2001
- DS2 Report: August 2001

☐ FLIGHT:

- ST5 Launch: 2003
- EO3 Launch 2004

☐ TECHNOLOGY SELECTION:

- ST6 Selection August 2001
- ST7 Selection December 2001

☐ TECHNOLOGY FORMULATION:

ST8 Subsystem Workshop January 2002

Low-Temperature Technologies

- □ CRYOCOOLERS
 - Cooling Mechanisms
 - Reliability
- ☐ HEAT TRANSFER AND COMPONENTS
 - Heat Exchangers
 - Fluid Flow Valves
- □ SPACE TRANSPORTATION
 - Propellants and Storage
 - Liquid Measures
- ☐ FACILITIES
 - Test Capabilities
 - Simulators and Modeling
- □ OTHER
 - Microelectronic Cooling
 - Contamination

Flight Validation Assessment

- ☐ Identify Needs:
 - Identify Mission application
 - Determine if a NASA Theme(s) is interested
- □ Determine the Viability of the Technology:
 - Determine if the technology is ready (TRL)
 - Decide on the Flight Justification
 - Determine if the Cost is reasonable
 - Identify the Access-to-Space options
- **□** Advertise:
 - Inform the NASA Theme(s) of the technology
 - Participate in an NMP Workshop
 - Respond to an NMP TA (Technology Announcement)